翻訳と辞書
Words near each other
・ Lunar geologic timescale
・ Lunar House
・ Lunar IceCube
・ Lunar Infrastructure for Exploration
・ Lunar Jetman
・ Lunar Jim
・ Lunar Knights
・ Lunar lander
・ Lunar Lander (1979 video game)
・ Lunar lander (disambiguation)
・ Lunar Lander (space mission)
・ Lunar Lander (video game series)
・ Lunar Lander Challenge
・ Lunar Landing Confirmed
・ Lunar Landing Research Facility
Lunar Landing Research Vehicle
・ Lunar Laser Ranging experiment
・ Lunar lava tube
・ Lunar Leepers
・ Lunar Legend
・ Lunar limb
・ Lunar Linux
・ Lunar Magic
・ Lunar magma ocean
・ Lunar mansion
・ Lunar mare
・ Lunar meteorite
・ Lunar Mission One
・ Lunar month
・ Lunar Muzik


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Lunar Landing Research Vehicle : ウィキペディア英語版
Lunar Landing Research Vehicle

The Bell Aerosystems Lunar Landing Research Vehicle (LLRV) was an Apollo Project era program to build a simulator for the Moon landings. The LLRVs were used by the FRC, now known as the NASA Armstrong Flight Research Center, at Edwards Air Force Base, California, to study and analyze piloting techniques needed to fly and land the Apollo Lunar Module in the moon's low gravity environment.〔(Unconventional, Contrary, and Ugly: The Lunar Landing Research Vehicle Gene J. Matranga, C. Wayne Ottinger, and Calvin R. Jarvis with C. Christian Gelzer Monograph is Aerospace History #35 NASA SP-2004-4535, 2005 )〕
The research vehicles were vertical take-off vehicles that used a single jet engine mounted on a gimbal so that it always pointed vertically. It was adjusted to cancel 5/6 of the vehicle's weight, and the vehicle used hydrogen peroxide rockets which could fairly accurately simulate the behaviour of a lunar lander.
Success of the two LLRVs led to the building of three Lunar Landing Training Vehicles (LLTVs) an improved version of the LLRV, for use by Apollo astronauts at the Manned Spacecraft Center in Houston, Texas, predecessor of NASA's Johnson Space Center. One LLRV and two LLTVs were destroyed in crashes, but the rocket ejection seat system recovered the pilot safely in all cases.
The final phase of every Apollo landing was manually piloted by the mission commander. Because of landing site selection problems, Neil Armstrong, Apollo 11 commander, said his mission would not have been successful without extensive training on the LLTVs. Selection for LLTV training was preceded by helicopter training. In a 2009 interview, Apollo astronaut Curt Michel stated, ”For airborne craft, the helicopter was the closest in terms of characteristics to the lunar lander. So if you didn’t get helicopter training, you knew you weren’t going. That sort of gave it away.”〔(From astrophysicist to astronaut — and back (2009 Rice interview) )〕 Even Tom Stafford and Gene Cernan did not get LLTV training for their Apollo 10 mission which was the first flight of the Lunar Module to the Moon, because NASA "didn't have plans to land on Apollo 10" so "there wasn't any point in...training in the LLTV." Cernan only got this training after being assigned as backup commander for Apollo 14, and in 1972 was the last to fly the LLTV while training as commander for Apollo 17, the final landing mission.〔(Utility of the Lunar Landing Training Vehicle (ALSJ) )〕
==History==
Built of aluminum alloy trusses, the LLRVs were powered by a General Electric CF700-2V turbofan engine with a thrust of 4,200 lbf (19 kN), mounted vertically in a gimbal. The engine lifted the vehicle to the test altitude and was then throttled back to support five-sixths of the vehicle's weight, simulating the reduced gravity of the moon. Two hydrogen peroxide lift rockets with thrust that could be varied from 100 to 500 lbf (440 to 2,200 N) handled the vehicle's rate of descent and horizontal movement. Sixteen smaller hydrogen peroxide thrusters, mounted in pairs, gave the pilot control in pitch, yaw and roll.
The pilot had an ejection seat. On activation, it propelled the pilot upward from the vehicle with an acceleration of roughly 14 times the force of gravity for about a half second. From the ground, it was sufficient to propel the seat and pilot to an altitude of about where the pilot’s parachute could be automatically and successfully deployed. Manufactured by Weber Aircraft LLC, it was one of the first zero-zero ejection seats, capable of saving the operator even if the aircraft was stationary on the ground - a necessity given the LLRV's low and slow flight envelope.〔(NASA Dryden Technology Facts - Lunar Landing Research Vehicle )〕〔http://www.ejectionsite.com/weber.htm〕〔http://www.ejectionsite.com/project90.htm〕
After conceptual planning and meetings with engineers from Bell Aerosystems, Buffalo, New York, a company with experience in vertical takeoff and landing (VTOL) aircraft, NASA issued Bell a $50,000 study contract in December 1961. Bell had independently conceived a similar, free-flying simulator, and out of this study came the NASA Headquarters' endorsement of the LLRV concept, resulting in a $3.6 million production contract awarded to Bell on February 1, 1963, for delivery of the first of two vehicles for flight studies at the FRC within 14 months.
LLRV#1 was shipped from Bell to FRC in April. LLRV#2 was also shipped at the same time, but in parts. Because of a potential cost overrun, the FRC Director, Paul Bickle, decided to have it assembled and tested at FRC. The emphasis then was on LLTV#1. It was first readied for flight on a tilt table constructed at FRC to evaluate its engine operation without actually flying it. The scene then shifted to the old South Base area of Edwards.
The first three flights of #1 were made on October 30, 1964 by FRC’s senior research test pilot, Joe Walker. He continued to pilot a number of flights through December 1964 after which flights were shared with Don Mallick, also a FRC research pilot, and Jack Kleuver the Army’s senior helicopter test pilot. Familiarization flights were also made by NASA Manned Spacecraft Center (later Johnson Space Center) pilots Joseph Algranti and H.E. Bud Ream.
Modifications were later made to the cockpits of both LLRV’s to better simulate the actual Lunar Module. These included the addition of the LM’s three-axis hand controller and throttle. A Styrofoam cockpit enclosure was also added to simulate the pilot’s restricted view in the LM.
The final LLRV flight at FRC took place on November 30, 1966. In December 1966 vehicle #1 was shipped to Houston, followed by #2 in January 1967. During the preceding two years, a total of 198 flights of LLRV#1 and six flights of LLRV#2 were flown without a serious accident.
The first LLRV flight by Neil Armstrong was made in vehicle #1 on March 27, 1967 from its base at a corner of Ellington Air Force Base, the headquarters for Johnson Space Center’s aircraft operations. Joe Algranti, chief of JSC’s Aircraft Operations Division and test pilot H.E.”Bud” Ream also made flights that month. Both observed, as did Armstrong and the other astronauts, that if a serious control problem developed, the pilot had little choice but to eject since the vehicle only operated to a maximum altitude of .
On May 6, 1968 Armstrong was forced to use LLRV #1’s ejection seat from about altitude after a control problem, and had about four seconds on his full parachute before landing on the ground unhurt. The accident investigation board found that the fuel for the vehicle’s attitude control thrusters had run out, and that high winds were a major factor. As a result the decision was made by JSC management to terminate further LLRV flights as the first LLTV was about to be shipped from Bell to Ellington to begin ground and flight testing.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Lunar Landing Research Vehicle」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.